Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS One ; 16(7): e0255301, 2021.
Article in English | MEDLINE | ID: covidwho-1334776

ABSTRACT

In the context of the current global pandemic and the limitations of the RT-PCR test, we propose a novel deep learning architecture, DFCN (Denoising Fully Connected Network). Since medical facilities around the world differ enormously in what laboratory tests or chest imaging may be available, DFCN is designed to be robust to missing input data. An ablation study extensively evaluates the performance benefits of the DFCN as well as its robustness to missing inputs. Data from 1088 patients with confirmed RT-PCR results are obtained from two independent medical facilities. The data includes results from 27 laboratory tests and a chest x-ray scored by a deep learning model. Training and test datasets are taken from different medical facilities. Data is made publicly available. The performance of DFCN in predicting the RT-PCR result is compared with 3 related architectures as well as a Random Forest baseline. All models are trained with varying levels of masked input data to encourage robustness to missing inputs. Missing data is simulated at test time by masking inputs randomly. DFCN outperforms all other models with statistical significance using random subsets of input data with 2-27 available inputs. When all 28 inputs are available DFCN obtains an AUC of 0.924, higher than any other model. Furthermore, with clinically meaningful subsets of parameters consisting of just 6 and 7 inputs respectively, DFCN achieves higher AUCs than any other model, with values of 0.909 and 0.919.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Databases, Factual , Deep Learning , Models, Theoretical , SARS-CoV-2 , Humans , Random Allocation
3.
Clin Chem Lab Med ; 58(9): 1587-1593, 2020 08 27.
Article in English | MEDLINE | ID: covidwho-619858

ABSTRACT

Objectives: The novel coronavirus disease 19 (COVID-19), caused by SARS-CoV-2, spreads rapidly across the world. The exponential increase in the number of cases has resulted in overcrowding of emergency departments (ED). Detection of SARS-CoV-2 is based on an RT-PCR of nasopharyngeal swab material. However, RT-PCR testing is time-consuming and many hospitals deal with a shortage of testing materials. Therefore, we aimed to develop an algorithm to rapidly evaluate an individual's risk of SARS-CoV-2 infection at the ED. Methods: In this multicenter retrospective study, routine laboratory parameters (C-reactive protein, lactate dehydrogenase, ferritin, absolute neutrophil and lymphocyte counts), demographic data and the chest X-ray/CT result from 967 patients entering the ED with respiratory symptoms were collected. Using these parameters, an easy-to-use point-based algorithm, called the corona-score, was developed to discriminate between patients that tested positive for SARS-CoV-2 by RT-PCR and those testing negative. Computational sampling was used to optimize the corona-score. Validation of the model was performed using data from 592 patients. Results: The corona-score model yielded an area under the receiver operating characteristic curve of 0.91 in the validation population. Patients testing negative for SARS-CoV-2 showed a median corona-score of 3 vs. 11 (scale 0-14) in patients testing positive for SARS-CoV-2 (p<0.001). Using cut-off values of 4 and 11 the model has a sensitivity and specificity of 96 and 95%, respectively. Conclusions: The corona-score effectively predicts SARS-CoV-2 RT-PCR outcome based on routine parameters. This algorithm provides the means for medical professionals to rapidly evaluate SARS-CoV-2 infection status of patients presenting at the ED with respiratory symptoms.


Subject(s)
Algorithms , Betacoronavirus , Coronavirus Infections/diagnosis , Diagnostic Tests, Routine/methods , Pneumonia, Viral/diagnosis , Aged , C-Reactive Protein/analysis , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/blood , Emergency Service, Hospital , Female , Ferritins/blood , Humans , L-Lactate Dehydrogenase/blood , Lymphocyte Count , Male , Middle Aged , Neutrophils/metabolism , Pandemics , Pneumonia, Viral/blood , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL